Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
5.
Br J Cancer ; 125(7): 939-947, 2021 09.
Article in English | MEDLINE | ID: covidwho-1360191

ABSTRACT

BACKGROUND: Using an updated dataset with more patients and extended follow-up, we further established cancer patient characteristics associated with COVID-19 death. METHODS: Data on all cancer patients with a positive reverse transcription-polymerase chain reaction swab for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) at Guy's Cancer Centre and King's College Hospital between 29 February and 31 July 2020 was used. Cox proportional hazards regression was performed to identify which factors were associated with COVID-19 mortality. RESULTS: Three hundred and six SARS-CoV-2-positive cancer patients were included. Seventy-one had mild/moderate and 29% had severe COVID-19. Seventy-two patients died of COVID-19 (24%), of whom 35 died <7 days. Male sex [hazard ratio (HR): 1.97 (95% confidence interval (CI): 1.15-3.38)], Asian ethnicity [3.42 (1. 59-7.35)], haematological cancer [2.03 (1.16-3.56)] and a cancer diagnosis for >2-5 years [2.81 (1.41-5.59)] or ≥5 years were associated with an increased mortality. Age >60 years and raised C-reactive protein (CRP) were also associated with COVID-19 death. Haematological cancer, a longer-established cancer diagnosis, dyspnoea at diagnosis and raised CRP were indicative of early COVID-19-related death in cancer patients (<7 days from diagnosis). CONCLUSIONS: Findings further substantiate evidence for increased risk of COVID-19 mortality for male and Asian cancer patients, and those with haematological malignancies or a cancer diagnosis >2 years. These factors should be accounted for when making clinical decisions for cancer patients.


Subject(s)
COVID-19/epidemiology , Hematologic Neoplasms/epidemiology , Neoplasms/epidemiology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/pathology , Hematologic Neoplasms/virology , Hospitals , Humans , London/epidemiology , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Neoplasms/virology , Risk Factors
7.
Br J Haematol ; 194(6): 999-1006, 2021 09.
Article in English | MEDLINE | ID: covidwho-1258906

ABSTRACT

Patients receiving targeted cancer treatments such as tyrosine kinase inhibitors (TKIs) have been classified in the clinically extremely vulnerable group to develop severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), including patients with chronic myeloid leukaemia (CML) taking TKIs. In addition, concerns that immunocompromised individuals with solid and haematological malignancies may not mount an adequate immune response to a single dose of SARS-CoV-2 BNT162b2 (Pfizer-BioNTech) vaccine have been raised. In the present study, we evaluated humoral and cellular immune responses after a first injection of BNT162b2 vaccine in 16 patients with CML. Seroconversion and cellular immune response before and after vaccination were assessed. By day 21 after vaccination, anti-Spike immunoglobulin G was detected in 14/16 (87·5%) of the patients with CML and all developed a neutralising antibody response [serum dilution that inhibits 50% infection (ID50 ) >50], including medium (ID50 of 200-500) or high (ID50 of 501-2000) neutralising antibodies titres in nine of the 16 (56·25%) patients. T-cell response was seen in 14/15 (93·3%) evaluable patients, with polyfunctional responses seen in 12/15 (80%) patients (polyfunctional CD4+ response nine of 15, polyfunctional CD8+ T-cell response nine of 15). These data demonstrate the immunogenicity of a single dose of SARS-CoV-2 BNT162b2 vaccine in most patients with CML, with both neutralising antibodies and polyfunctional T-cell responses seen in contrast to patients with solid tumour or lymphoid haematological malignancies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 , Hematologic Neoplasms/immunology , Immunity, Cellular/drug effects , Immunoglobulin G/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , SARS-CoV-2/immunology , Adult , Aged , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Female , Hematologic Neoplasms/drug therapy , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Male , Middle Aged , Protein Kinase Inhibitors/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
9.
Cancers (Basel) ; 13(10)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234670

ABSTRACT

Very few studies investigating COVID-19 in cancer patients have included cancer patients as controls. We aimed to identify factors associated with the risk of testing positive for SARS CoV2 infection in a cohort of cancer patients. We analyzed data from all cancer patients swabbed for COVID-19 between 1st March and 31st July 2020 at Guy's Cancer Centre. We conducted logistic regression analyses to identify which factors were associated with a positive COVID-19 test. Results: Of the 2152 patients tested for COVID-19, 190 (9%) tested positive. Male sex, black ethnicity, and hematological cancer type were positively associated with risk of COVID-19 (OR = 1.85, 95%CI:1.37-2.51; OR = 1.93, 95%CI:1.31-2.84; OR = 2.29, 95%CI:1.45-3.62, respectively) as compared to females, white ethnicity, or solid cancer type, respectively. Male, Asian ethnicity, and hematological cancer type were associated with an increased risk of severe COVID-19 (OR = 3.12, 95%CI:1.58-6.14; OR = 2.97, 95%CI:1.00-8.93; OR = 2.43, 95%CI:1.00-5.90, respectively). This study is one of the first to compare the risk of COVID-19 incidence and severity in cancer patients when including cancer patients as controls. Results from this study have echoed those of previous reports, that patients who are male, of black or Asian ethnicity, or with a hematological malignancy are at an increased risk of COVID-19.

10.
Sci Immunol ; 6(58)2021 04 07.
Article in English | MEDLINE | ID: covidwho-1172732

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Subject(s)
COVID-19/metabolism , Complement Activation , Epithelial Cells/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Lung/metabolism , MAP Kinase Signaling System , SARS-CoV-2/metabolism , COVID-19/pathology , Cell Line, Tumor , Complement C3a/metabolism , Complement Factor B/metabolism , Epithelial Cells/pathology , Humans , Lung/pathology
13.
Front Oncol ; 10: 1279, 2020.
Article in English | MEDLINE | ID: covidwho-706935

ABSTRACT

Background: There is insufficient evidence to support clinical decision-making for cancer patients diagnosed with COVID-19 due to the lack of large studies. Methods: We used data from a single large UK Cancer Center to assess the demographic/clinical characteristics of 156 cancer patients with a confirmed COVID-19 diagnosis between 29 February and 12 May 2020. Logistic/Cox proportional hazards models were used to identify which demographic and/or clinical characteristics were associated with COVID-19 severity/death. Results: 128 (82%) presented with mild/moderate COVID-19 and 28 (18%) with a severe case of the disease. An initial cancer diagnosis >24 months before COVID-19 [OR: 1.74 (95% CI: 0.71-4.26)], presenting with fever [6.21 (1.76-21.99)], dyspnea [2.60 (1.00-6.76)], gastro-intestinal symptoms [7.38 (2.71-20.16)], or higher levels of C-reactive protein [9.43 (0.73-121.12)] were linked with greater COVID-19 severity. During a median follow-up of 37 days, 34 patients had died of COVID-19 (22%). Being of Asian ethnicity [3.73 (1.28-10.91)], receiving palliative treatment [5.74 (1.15-28.79)], having an initial cancer diagnosis >24 months before [2.14 (1.04-4.44)], dyspnea [4.94 (1.99-12.25)], and increased CRP levels [10.35 (1.05-52.21)] were positively associated with COVID-19 death. An inverse association was observed with increased levels of albumin [0.04 (0.01-0.04)]. Conclusions: A longer-established diagnosis of cancer was associated with increased severity of infection as well as COVID-19 death, possibly reflecting the effects a more advanced malignant disease has on this infection. Asian ethnicity and palliative treatment were also associated with COVID-19 death in cancer patients.

14.
Res Sq ; 2020 Jun 09.
Article in English | MEDLINE | ID: covidwho-671958

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) present with a range of devastating acute clinical manifestations affecting the lungs, liver, kidneys and gut. The best-characterized entry receptor for the disease-causing virus SARS-CoV2, angiotensin converting enzyme (ACE) 2, is highly expressed in these tissues. However, the pathways that underlie the disease are still poorly understood. Here we show that the complement system is unexpectedly one of the intracellular pathways most highly induced by SARS-CoV2 infection in lung epithelial and liver cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Modelling the regulome of host genes induced by COVID-19 and the drugs that could normalize these genes both implicated the JAK1/2-STAT1 signaling system downstream of type I interferon receptors, and NF-kB. Ruxolitinib, a JAK1/2 inhibitor and the top predicted pharmaceutical candidate, normalized interferon signature genes, IL-6 (the best characterized severity marker in COVID-19) and all complement genes induced by SARS-CoV2, but did not affect NF-kB-regulated genes. We predict that combination therapy with JAK inhibitors and other agents with the potential to normalize NF-kB-signaling, such as anti-viral agents, may serve as an effective clinical strategy.

SELECTION OF CITATIONS
SEARCH DETAIL